Этиловый спирт. Спирт этиловый медицинский - применение

Министерство образования и науки РФ

Тверской государственный технический университет

Кафедратехнологии полимерных материалов

Курсовая работа по теме:

«Синтез этилового спирта»

Выполнила: Дмитриева А.В.

Принял: Лагусева Е.И.

ст.препод. кафедры ТПМ


Задание к курсовой работе

Введение

1 Литературный обзор

1.1 Методы получения

1.1.1 Получение этилового спирта сбраживанием пищевого сырья

1.1.2 Гидролиз древесины с последующим брожением

1.1.3 Получение этилового спирта из сульфитных щёлоков

1.1.4 Сернокислотный способ гидратации этилена

1.3 Источники сырья

2 Физико-химические основы процесса

2.1 Механизм процесса

2.2 Кинетика и термодинамика процесса

2.3 Влияние основных параметров на скорость процесса

2.3.1 Температура

2.3.2 Влияние давления

2.3.3 Концентрация исходных веществ (реагентов)

2.3.4 Влияние мольного соотношения воды и этилена

2.3.5 Катализаторы

3 Технологическая часть

3.1.1 Отделение гидратации этилена

3.1.2 Отделение ректификации водно-спиртового конденсата

3.1.3 Катализаторное отделение

3.2 Основное и вспомогательное оборудование, его характеристика и обслуживание

3.2.1 Реактор и колонные аппараты

3.2.2 Теплообменная аппаратура

3.2.3 Емкостное оборудование

3.2.4 Оборудование катализаторного отделения

3.2.5 Компрессоры и насосы

3.2.6 Вспомогательное оборудование

3.3 Характеристика сырья и продукта

4 Расчётная часть

4.1 Материальные расчёты и составление материального баланса процесса

4.2 Тепловые расчёты и составление теплового баланса процесса

4.3 Термодинамический расчёт

5 Отходы и их обезвреживание

6.1 Характеристика производства по взрыво- и пожароопасности

Заключение

Список использованных источников

Произвести технологический расчёт процесса производства синтетического этилового спирта.

Данные

производительность – 12 тонн в час;

состав этиленовой фракции: этилен – 75%, этан – 25%;

соотношение Н 2 О: С 2 Н 4 = 0,65:1 ,

степень превращения по этилену - 94%;

в побочные продукты – 6%.

Введение

Этилен СН 2 =СН 2 , пропилен СН 2 =СН=СН 2 , бутилен СН3-СН2-СН=СН2, бутадиен (дивинил) СН 2 =СН-СН-СН 2 будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен, и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т.п.), окисления (окись этилена),оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый, и другие спирты. Этиловый спирт (этанол, метилкарбинол, винный спирт) С 2 Н 5 ОН, мол.в. 46,07 - важнейший представитель предельных одноатомных спиртов. Этиловый спирт - бесцветная, легко подвижная жидкость со жгучим вкусом и характерным запахом;т. кип. 78,3° С; т. затв. -112°С; плотность 0,789 г/см 3 ; границы взрывоопасных концентраций этилового спирта в воздухе 3,28 - 18,95 об.%; предельно допустимая концентрация паров этилового спирта в воздухе 1000 мг/м.Этиловый спирт смешивается в любых соотношениях с водой, спиртами, эфиром, глицерином, бензином и др. Органическими растворителями, горит бесцветным пламенем.

Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. Он широко применяется как растворитель и как исходное соединение для различных синтезов. Особенно большие количества этилового спирта расходуются в производстве синтетического каучука. Этиловый спирт используется также как исходный продукт для производства хлораля, этилацетата, диэтилового эфира и многих других продуктов органического синтеза.

1 Литературный обзор

1.1 Методы получения

Этиловый спирт может быть получен одним из следующих методов: брожением пищевого сырья (зерна, картофеля и др.), а также отходов сахарного производства – мелассы; гидролизом растительных материалов, переработкой сульфитного щелока, гидратацией этилена. Наибольшее значение имеют получение этилового спирта гидратацией этилена и сбраживанием сельскохозяйственного сырья и продуктов его переработки.

Сущность спиртового брожения состоит в том, что виноградный сахар (глюкоза) С 6 Н 12 0 6 в присутствии вещества, вызывающего брожение, через ряд стадий превращается вэтиловый спирт и двуокись углерода:

зимаза (дрожжи)

С 6 Н 12 0 6 2С 2 Н 5 ОН + 2С0 2

В промышленности для получения спирта пользуются не природным виноградным сахаром, а крахмалом картофеля, хлебных злаков, отходами сахарных заводов. Крахмал предварительно осахаривают под действием особого энзима - диастаза, находящегося в солоде (проросших зернах ячменя или ржи). Осахаривание идет с присоединением воды к крахмалу; при этом образуется дисахарид - мальтоза С 12 Н 22 О 11 :

диастаз (солод)

m(С 6 Н 10 О 6) + 0,5mН 2 О0,5m(C 12 H 22 O 11)


В процессе брожения под влиянием энзима мальтоза гидролизуется в глюкозу:

мальгаза (дрожжи)

С 12 Н 22 О 11 + Н 2 0 2С 6 Н 12 О в

мальтоза глюкоза

Глюкозу потом подвергают спиртовому брожению. Мальтаза, как и зимаза, вырабатывается быстроразмножающимися дрожжевыми грибками.

Основными видами пищевого сырья для получения этилового спирта являются картофель и зерновые культуры.

Пищевое сырье вначале очищают от пыли, грязи и механических примесей, оболочку толстокожурного зерна разрушают на вальцах, жерновах или других приспособлениях, после чего очищенный материал разваривают острым паром под давлением в течение 45-110 мин (в зависимости от вида сырья); при этом к зерну прибавляют воду. После разваривания массу выпускают через выдувное отверстие разваривающего аппарата; при этом происходит перепад давления от 4-5 ат до 0,2-0,5 ат (избыточных), вследствие чего оболочки клеток разрываются и сырье превращается в однородную жидкую массу, поступающую в заторный чан. В этот же чан для осахаривания крахмала вводят ферментативный препарат - солод, который получают из проращенного в особых условиях зерна (ячменя, ржи, проса). После добавления солода массу выдерживают 10-15 мин при 61 для ее стерилизации, а также растворения и осахаривания крахмала. По окончании осахаривания массу охлаждают до 30, после чего в нее вводят дрожжи. Полученную массу охлаждают до 22-26 град. (двухсуточное брожение) или 15-18 град. (трехсуточное брожение) и перекачивают в бродильные чаны. Кроме этилового спирта при брожении образуются: глицерин, янтарная кислота, метиловый спирт, сивушные масла, сложные эфиры и др. Длительность брожения при непрерывном методе составляет 60-65 часов, содержание э.с. в зрелой бражке 8-10об.%. Бражка поступает в брагоперегонный аппарат, из которого отгоняют этиловый спирт и летучие примеси. Остающийся в аппарате твердый продукт - барда (4,5-7,4%), используется на корм скоту. Крепость получаемого при перегонке спирта-сырца должна быть не менее 88% (объемн.) Из спирта-сырца очисткой его от примесей получают спирт-ректификат (95,5%). На рис.1 приведена схема производства этилового спирта из пищевого сырья, включающая процессы разваривания и осахаривания крахмала.

Древесина состоит из целлюлозы, гемипеллюлозы (пентозаны и гексозаны) и лигнина. В составдревесины входят также минеральные вещества (зола), смолы и жиры, дубильные вещества и т. д. На целлюлозу приходится около половины массы древесины.

Для получения спирта древесину обрабатывают (гидролизуют) серной или соляной кислотой. При этом из целлюлозы образуется глюкоза

(С 6 Н 10 О 5) х + х Н 2 О х С 6 Н 12 О 6

целлюлоза глюкоза

которая затем проходит стадию спиртового брожения. При гидролизе концентрированной (41%-ной) соляной кислотой получается раствор, содержащий до 30% сахаров. Однако этот способ из-за сильной коррозии оборудования, а также трудностей при получении и регенерации 41%-ной соляной кислоты не нашел широкого развития. J

Распространение в промышленности получил гидролиз древесины разбавленной серной кислотой. По этому методу древесные опилки обрабатывают в соединенных последовательно аппаратах (перколяторах) 0,1- 0,4%-ной H 2 S0 4 при 7-15 кгс/см 2 и 150-170°С. Получаемый 4%-ный раствор сахара выпаривают, нейтрализуют гашеной известью и после фильтрования сбраживают. Внедрен также гидролиз 0,4%-ной серной кислотой в трубчатых аппаратах непрерывного действия при нагревании паром под давлением 25-30 кгс/см 2 .

Наряду с этиловым спиртом на гидролизных заводах получают ценные побочные продукты - фурфурол, метиловый спирт, уксусную кислоту, скипидар, белковые дрожжи, лигнин и т. д. Из 1 т древесных опилок можно получить до 200 кг гидролизного спирта (в расчете на 100%-ный).

Этиловый спирт, получаемый на предприятиях целлюлозно-бумажной промышленности при сульфитной варке целлюлозы, принято называть сульфитным спиртом.

При сульфитном способе выделения чистой целлюлозы большие количества древесной щепы обрабатывают при повышенной температуре раствором бисульфита кальция или магния, содержащим некоторый избыток свободного сернистого ангидрида. Жидкость, оставшуюся после обработки щепы, называют сульфитными щелоками. Это - отход целлюлозно-бумажного производства. На каждую тонну вырабатываемой целлюлозы получается 8-12 кг сульфитных щелоков, содержащих 10- 12% сухого вещества (лигнин, углеводороды, белки, смолы, жиры, окись кальция и др.). Примерно 25% сухого. вещества относится к сахарам, причем 2 / 3 из них способны сбраживаться, давая этиловый спирт.

Из щелоков острым паром отгоняют сернистый ангидрид и другие летучие вещества, затем нейтрализуют щелок известковым молоком и направляют его в батарею бродильных чанов, где щелок последовательно перетекает из одного чана в другой. Брожение проводят при 30 °С в течение примерно 20 ч при.интенсивном перемешивании щелока с дрожжами. По окончании брожения дрожжи отделяют в сепараторах от сахарного раствора (бражки). Бражка получается слабой (около 1% спирта). Ее подвергают ректификации с получением 95%-ного этанола.

2.1 Механизм процесса.

Присоединение воды к олефинам всегда происходит по правилу Марковникова. Поэтому первичный спирт можно получить только из этилена; из других олефинов получаются вторичные или третичные спирты.

Прямой гидратацией этилена называется обратимый экзотермический процесс непосредственного (без образования промежуточных продуктов) присоединения воды к этилену в присутствии катализатора с образованием этилового спирта:

СН 2 =СН 2 + Н 2 С 2 H 5 OH+ 10,55 ккал

Катализатором процесса служит ортофосфорная кислота на шариковом носителе - силикагеле. Реакция предположительно протекает в четыре стадии:

1) физическое растворение этилена в пленке кислоты;

2) образование иона карбония:

С 2 Н 4 + H + C 2 H 5 +

3) взаимодействие иона карбония с водой с образованием иона алкоксония:

C 2 H 5 + + Н 2 ОC 2 H 5 О + Н 2

4) разложение иона алкоксония на спирт и протон:

C 2 H 5 О + Н 2 C 2 H 5 ОН+ Н +

Активность катализатора в течение цикла его пробега постепенно снижается из-за уноса ортофосфорной кислоты с проходящим через реактор потоком продуктов. Во избежание коррозии оборудования унесенной кислотой ее нейтрализуют; с этой целью в парогазовый поток после реактора впрыскивают подщелоченный водно-спиртовый конденсат.

Степень превращения этилена за один проход через реактор составляет 3,5-4,8%. Непрореагировавший этилен возвращается в реактор (рециркулирует), пары воды и спирта конденсируются в системе теплообменников и холодильников, а циркулирующий газ при этом охлаждается. Водно-спиртовый конденсат отделяют от циркулирующего газа в сепараторах и направляют на ректификацию. Из всего количества этилена, вступившего вреакцию, только 95-98,5% превращается в спирт, а остальное - в диэтиловый эфир, ацетальдегид, полимеры. С целью повышения степени превращения этилена в спирт поддерживают высокую концентрацию этилена в циркулирующем газе (90% масс, и более). При этом необходимо, чтобы концентрация этилена в свежей этиленовой фракции, поступающей с газоразделительной установки, была равна 99% (масс).

При ректификации водно-спиртового конденсата из него получают 93-94%-ный спирт. Из выделенного концентрированного спирта удаляют небольшие количества ацетилена.

2.2 Кинетика и термодинамика процесса.

Рассмотрим равновесие основной реакции: гидратации - внутримолекулярной дегидратации:

Н 2 С=СН 2 + Н 2 О Н 2 СОН – СН 3

Она протекает с выделением тепла, следовательно ее равновесие смещается вправо при понижении температуры. Дегидратации, наоборот, способствует нагревание. Равновесие невыгодно для гидратации олефинов, так как при 150-300 о С, когда катализаторы процесса достаточно активны, DG о имеет большую положительную величину и равновесие смещено в сторону дегидратации. При этом для олефинов разного строения различия в термодинамике рассматриваемых реакций незначительны. Как показывает стехиометрия реакций, на их равновесие можно влиять, изменяя давление. Внутримолекулярной дегидратации, идущей с увеличением числа молей веществ, способствует пониженное или обычное давление. Наоборот, гидратации олефинов (в том числе и этилена) благоприятствует высокое давление, увеличивающее равновесную степень конверсии олефина. Так, последняя при 250-300 о С и атмосферном давлении составляет всего 0,1-0,2%, что совершенно неприемлемо для практических целей, но при 7-8 Мпа и тех же температурах она возрастает до 12-20 %. Зависимость равновесной степени конверсии этилена при его гидратации от давления и температуры изображена на рис.2, причем аналогичные кривые характерны и для других олефинов. Очевидно, что гидратации способствует одновременное снижение температуры и повышение давления.

Рассмотрим теперь равновесие в системемежмолекулярная дегидратация спиртов - гидролиз простых эфиров:

2ROHROR + Н 2 О

В случае этанола ее равновесие описывается уравнением

показывающим, что оно смещается вправо при снижении температуры. Следовательно, при 200-400 о С внутри- и межмолекулярная дегидратация конкурируют друг с другом. Термодинамическим методом регулирования направления этих реакций является изменение давления: на образование простого эфира оно не влияет, но получению олефина его снижение благоприятствует.

В ряде случаев роль воды более сложная. Так, фосфорная кислота, нанесенная на пористый носитель, образует на его поверхности жидкую пленку, которая абсорбирует воду из газовой фазы. При каждых данных температуре и парциальном давлении водяных паров в газовой фазе устанавливается фазовое равновесие, и фосфорная кислота в пленке имеет определенную концентрацию и соответствующую ей каталитическую активность. Последняя падает при снижении температуры и росте парциального давления воды, что ограничивает выбор этих параметров для каждого случая определенными рамками.

2.3 Влияние основных параметров на скорость процесса.

2.3.1 Температура.

Реакцию прямой гидратации этилена желательно проводить при невысоких температурах. Однако практически выбор температуры лимитируется скоростью реакции и активностью применяемых катализаторов.С повышением температуры, при прочих равных условиях, равновесная степень превращения этилена в спирт снижается. Однако при низких температурах активность фосфорнокислотного катализатора очень мала. Так, степень конверсии этилена при 280-290 о С достигает лишь 4-5%, а при более низких температурах она еще меньше.На практике процесс прямой гидратации в паровой фазе в присутствии фосфорнокислотного катализатора ведут в интервале 260-300 о С.

С повышением температуры до 290 °С скорость гидратации этилена возрастает. Дальнейшее повышение температуры до 320 °С сопровождается незначительным снижением степени конверсии этилена в этиловый спирт; кроме того, при этом резко возрастает выход побочных продуктов. Зависимость текущей производительности реактора по спирту (G c п) оттемпературы (Т, К) в верхней части аппарата описывается эмпирическим уравнением:

где а, b , с – коэффициенты, зависящие от активности катализатора и от технологических параметров процесса. Каждому моменту времени соответствует оптимальная температура, обеспечивающая максимальные текущую и суммарную производительность аппарата при минимальной себестоимости спирта. Отклонение температуры от оптимальной на 5°С приводит к снижению производительности реактора на 5%; при этом соответсвенно возрастает расход пара, электроэнергии и катализатора на 1 т спирта. Оптимальная температура (Т, К) верха реактора, в соответствии с литературными данными, определяется по формуле:

где Рн 2 о - парциальное давление паров воды в реакторе, кгс/см 2 ; t эф - эффективное время реакции, с. Использование этого уравнения для регулирования температуры верха аппарата осложняется трудностью определения t эф длякаждого момента работы реактора.

Повышение давления благоприятствует реакции гидратации, причем оптимальное давление составляет 6,7-8 Мпа. Это давление связано с процессом абсорбции этилена фосфорной кислотой. Оптимальное парциальное давление водяных паров равно 2,7-3 Мпа; оно и определяет мольное соотношение водяных паров и этилена. Оптимальное парциальное давление этилена составляет 3,5-3,7 Мпа. Общее давление складывается из парциальных давлений воды, этилена и примесей. При концентрации этилена в циркулирующем газе 80-85% общее давление системы получается равным 7-8 Мпа.

Повышение концентрации этилена в циркулирующем газе при постоянной циркуляции способствует повышению производительности реактора и снижению расхода пара, электроэнергии и катализатора на 1 т спирта. В то же время для поддержания более высокой концентрации этилена в газе необходимо увеличивать долю газа, выводимого из системы для удаления инертных примесей, а это отрицательно влияет на себестоимость спирта. Оптимальной концентрацией этилена в циркулирующем газе является 90-92% (об.). повышение концентрации этилена сверх 93% (об.) нецелесообразно, так как это значительно увеличивает себестоимость спирта.

Согласно термодинамическим данным, с увеличением отношения Н 2 О: С 2 Н 4 c 0,5:1 до 1: 1 значительно повышается степень конверсии олефина. Однако экспериментальные данные отличаются от термодинамических: с увеличением отношения Н 2 О: С 2 Н 4 до 0,7-0,75 степень конверсии этилена действительно возрастает, но при дальнейшем его увеличении она снижается.

Установлено также, что от соотношения Н 2 0: С 2 Н 4 зависит и активность катализатора гидратации. Оптимальная концентрация фосфорной кислоты в жидкостной пленке на пористом носителе составляет 83-85%. Эта величина зависит от парциального давления водяного пара, которое определяется общим давлением в системе и мольным отношением вода: этилен. Оптимальная концентрация Н 3 РО 4 наблюдается при соотношении Н 2 О: С 2 Н 4 = 0,75:1. С дальнейшим ростом этого соотношения возрастает количество воды в пленке, уменьшается концентрация кислоты и снижается степень конверсии этилена. Поэтому в промышленных условиях принято мольное соотношение Н 2 О: С 2 Н 4 =(0,6-0,7) : 1.

Промышленные катализаторы должны удовлетворять ряду требований, предъявляемых технологией. Катализаторы должны быть активными к данной реакции, возможно более стойкими к действию контактных ядов, сравнительно дешевыми, обладать высокой механической прочностью, термостойкостью, определенной теплопроводностью и т.п. Поэтому применяемые на практике катализаторы редко являются индивидуальными веществами и, как правило, представляют собой сложные механические смеси, называемые контактными массами. В состав контактной массы входят в основном три составные части: собственно катализатор, активаторы и носители.

Носителями называются термостойкие инертные пористые вещества, на которые тем или иным способом наносят катализатор. Использование носителей преследует как технологические, так и экономические цели. Во-первых, при этом создается пористая контактная масса с богато развитой внутренней активной поверхностью, увеличивается ее механическая прочность и термостойкость, во-вторых экономится дорогой катализатор (платина, никель, пятиокись ванадия и т.п.). В некоторых случаях сами носители могут быть активаторами. К типичным носителям катализаторов относятся силикагель, алюмосиликат, асбест, пемза, кизельгур, уголь, каолин, некоторые соли.

Поскольку любой каталитический процесс протекает на поверхности контактной массы, скорость и глубина такого процесса во многом определяется величиной поверхности катализатора. Одной из основных характеристик контактных масс является величина удельной поверхности S уд. ,т.е. поверхность единицы веса или объема катализатора. Для большинства промышленных катализаторов S уд составляет от нескольких десятков до нескольких сотен м 2 / г. Чтобы обеспечить столь высокую удельную поверхность, контактные массы должны быть материалами с высокой пористостью. Мелкие поры, пронизывая зерно контактной массы, создают внутреннюю поверхность, которая, как правило, в несколько сотен раз больше ее наружной поверхности.

В производстве этанола прямой гидратацией этилена наиболее широкое применение получил фосфорнокислотный катализатор на твердом носителе.

Катализаторы прямой гидратации не должны разрушаться под действием влаги, поэтому такой катализатор, как фосфорная кислота на кизельгуре, неприменим - он не имеет скелета и легко разрушается. В качестве носителя для фосфорной кислоты применяют силикагель или алюмосиликат. Чаще всего используют шариковый широкопористый силикагель, обработанный водяным паром с целью снижения удельной поверхности и подавления побочных реакций уплотнения.

Носитель пропитывают 65 %-ной фосфорной кислотой и сушат при 100 о С. Готовый катализатор содержит 35-40% Н 3 РО 4 85 %-ной концентрации.

В условиях реакции фосфорная кислота, осажденная на носителе, растворена в пленке воды, адсорбированной на поверхности пор, и реакция фактически протекает в жидкой пленке фосфорной кислоты. Кислотный катализ, таким образом,сводится к гомогенному катализу в жидкостной пленке катализатора.

Существенными недостатками фосфорнокислотного катализатора являются его коррозионная агрессивность и постепенный унос кислоты с поверхности носителя. Эти недостатки могут быть полностью устранены при использовании нейтральных катализаторов - вольфрамовых и кремневольфрамовых.

Разработаны процессы гидратации этилена на нейтральном катализаторе в жидкой фазе при 250-300 о С и 30 Мпа и при 300 о С и 14 Мпа. В этих случаях процесс ведут в колонне высокого давления, где на тарелках помещен катализатор - оксиды вольфрама на силикагеле (15-20 % WO 3). Этилен и воду подают в верхнюю часть колонны, а снизу отводят 10 %-ный спирт. В этом процессе не требуется расходовать большое количество тепла на испарение воды и перегрев водяного пара.

Разработаны и другие активные вольфрамовые катализаторы, содержащие 40-60% триоксида вольфрама на широкопористом силикагеле типа SiO 2 ·12WO 3 ·7Н 2 О с добавкой борной кислоты. Катализаторы этого типа готовят, пропитывая силикагель раствором вольфрамата аммония и прокаливая затем при 400 о С. Они не нуждаются в последующем восстановлении. Добавление в состав катализатора 5-10% борной кислоты существенно повышает его активность. Наиболее активный катализатор, содержащий 60% WO 3 и 5% В 2 О 3 на силикагеле, применяется в интервале 200-240 о С и 1,5-2,5Мпа, т.е. в более мягких условиях- при конверсии 5,5%.

Вольфрамовые катализаторы более активны, чем фосфорнокислотные, и могут работать в более мягких условиях. Однако они значительно дороже, ибо вольфрам - дефицитный материал, поэтому такие катализаторы не нашли широкого промышленного применения.

2.4 Методы выделения продукта из реакционной смеси

По технологической схеме прямой гидратации этилена, описанной в данной курсовой работе, отделение спирто-водного конденсата от этилена происходит в сепараторах, после чего спирто-водный раствор и все потоки спирто-водного конденсата после освобождения от растворенного этилена поступают на ректификацию. Газ, отходящий из сепараторов, содержит в себе примеси спирта. Для отделения от этих примесей газ направляется в водяной скруббер, а затем поступает на циркуляционный этиленовый компрессор. Ректификация осуществляется в колонне азеотропной ректификации, работающей по стандартной схеме. В ней от избытка воды отгоняется азеотроп спирт-вода. Спирт-ректификат содержит некоторый избыток воды, концентрация спирта в нем составляет 90-92%. С низа колонны выводится фузельнвя вода.

Рассмотрим теперь ряд изобретений по способам выделения этилового спирта. Авт.свид. 307997 (В.Н.Карасев и В.Я.Старцев). Изобретение относится к способам переработки спирта-сырца, полученного прямой гидратацией этилена на фосфорнокислом катализаторе.

В процессе получения синтетического этилового спирта способом прямой гидратации этилена на фосфорнокислом катализаторе образуется 5-25% - ный раствор спирта-сырца, содержащий полимеры, которые при дальнейшей переработке спирта-сырца (на ректификационных установках) распределяются на тарелках ректификационной колонны и выводятся с товарным продуктом - спиртом ректификатом) - ухудшая его качество, и фузельными водами, загрязняя химические стоки.

В существующем способе переработки спирта-сырца предусматривается вывод полимеров из колонн ректификации путем направления всего потока жидкостной фазы исчерпывающей части колонны во флорентийский сосуд. Из флорентийского сосуда (после отстаивания) полимеры направляют в сборник, а водно-спиртовой конденсат возвращают в исчерпывающую часть колонны на нижележащую тарелку.

В связи с тем, что концентрация полимеров в спирте-сырце составляет в среднем 0,1 вес.%, а количество жидкостной фазы в исчерпывающей части ректификационных колонн велико, данный метод не позволяет выделить полимеры и последние выводятся из колонны частично в составе фузельной воды в виде химически загрязненных стоков в больших количествах, сбрасываемых через установку биологической очистки в природные водоемы, частично попадая в продукт, ухудшая его качество. Полимеры, содержащиеся в фузельной воде, очищаются биологическим методом очень трудно.

С целью улучшения качества спирта и упрощения очистки сточных вод, предлагается при выделении этилового спирта, полученного прямой гидратацией этилена, отводить из ректификационных колонн жидкостную фазу с содержанием спирта 40-80 об.% с последующим ее разбавлением до содержания спирта 10-20 об.% и направлять в отстойник.

Полимеры, являясь водонерастворимыми органическими продуктами, хорошо растворяются в этиловом спиртеи в процессе ректификации накапливаются в колонне, достигая максимальной концентрации (17-35 об.%) в той части колонны, где концентрация спирта 40-80 об.%.

Выделившиеся при разбавлении полимеры отделяют от водно-спиртового слоя во флорентийском сосуде и выводят в сборник, а водно-спиртовой слой направляют обратно в колонну на тарелку питания.

Способ позволяет улучшить качество стоков по химическому поглощению кислорода на 60-65% и качество спирта по содержанию в нем примесей, определяющихся по ГОСТ 11547-65, на 25 вес.%.

Предмет изобретения: Способ выделения этилового спирта, полученного прямой гидратацией этилена, путем ректификации спирта-сырца с одновременным отводом жидкостной фазы исчерпывающей части колонны в отстойник, отделением полимерной фракции и возвратом водно-спиртовой фракции на ректификацию, отличающийся тем, что, с целью улучшения качества целевого продукта и упрощения очистки сточных вод, из ректификационной колонны отводят жидкостную фазу с содержанием 40-80 об.%, разбавляют ее до содержания спирта 10-20 об.% и направляют в отстойник.

Авторское свидетельство 368216. (Авторы: Г.З.Блюм, В.Л.Волков, С.С.Иевлева и др.). Способ выделения этилового спирта. С целью получения спирта высокой степени чистоты предлагается водно-спиртовые растворы, получаемые в качестве отходов при производстве двуокиси кремния, обрабатывать солями гидроксиламина в количестве 0,8-1% на 1 л спиртсодержащего раствора, а затем хлористым кальцием в количестве не менее 3 вес. % или разбавленной серной кислотой в количестве не менее 10 г на 1 л спиртосодержащего раствора с последующей ректификацией. При однократной ректификации с флегмовым числом 1 получают 96 %-ный спирт, при вторичной ректификации спирта (флегмовое число 4-5) получают этиловый спирт, по чистоте не уступающий гидролизному спирту высшей очистки, а также пищевому, вырабатываемому из пищевого сырья.

При проведении ректификации во фторопластовой колонне получают спирт особой чистоты, удовлетворяющий требованиям электроники. Авторское свидетельство 608796. Способ выделения этилового спирта (Авторы: Е.А.Рябенко, Г.З.Блюм, Г.Г.Виноградов и др.). Изобретение относится к усовершенствованному методу получения спиртов, в частности этилового спирта особой чистоты, используемого, например, в электротехнической промышленности.

По основному авт. свид. 368216 известен способ выделения этилового спирта из водно-спиртовых растворов, получаемых в качестве отходов при производстве двуокиси кремния обработкой их последовательно солями гидроксиламина.

Однако в таком способе целевой продукт загрязнен аммиаком и продуктами его реакции. В связи с хорошей растворимостью в воде сульфата аммония и некоторых других производных аммиака, образующихся при осаждении аммиака серной кислотой, последний полностью не удаляется из водного раствора спирта, РН такого спирта 7,5-8,0. Этот спирт не может быть использован при обработке полупроводниковых пленок, т.к. образует на их поверхности налеты, что приводит к нарушению работы приборов.

Cцелью повышения качества целевого продукта предлагается в способе выделения этилового спирта по авт. Свид. 368216 водноспиртовой раствор предварительно концентрировать до содержания этилового спирта 94,0 -96,6 об.%. Предпочтительно фильтрат разбавляют водой до 45-50 об.% и пропускают через активированный уголь со скоростью 2-5 см 3 /см 2 ·мин. Целевой продукт выделяют ректификацией. При этом происходит полное осаждение аммиака и ряда продуктов его реакции с серной кислотой и спиртом. Одновременно происходит более полное удаление некоторых микропримесей, например, Са,Fе.

Авторское свидетельство 577201. Способ выделения одноатомных алифатических спиртов. (Авторы: А.Д.Пешенко, В.И.Радюк и др.). Изобретение относится к области получения спиртов, в частности к усовершенствованному способу выделения одноатомных алифатических спиртов из водных растворов, которые широко используются в органическом синтезе.

Одноатомные спирты обычно выделяют из продуктов синтеза ректификацией, причем концентрация спирта в водных растворах, как правило, не превышает 4-5%.

Поэтому количество воды, которое необходимо отогнать в процессе ректификации для выделения спирта, в десятки раз превышает количество его самого. Так как теплота парообразования воды намного больше теплоты парообразования спиртов, то этот процесс связан с большими энергетическими затратами. Известен способ выделения одноатомных алифатических спиртов экстракцией сложным эфиром - этилацетатом. Однако он не позволяет достигнуть достаточно высокой степени извлечения спиртов, поскольку коэффициенты распределения для этих спиртов невысоки (для метанола - 0,1641, этанола и пропанола 0,5176 и 2,4270) Кроме этого этилацетат хорошо растворим в воде и имеет невысокую температуру кипения (77,1град.C) и в связи с этим количество экстрагента, которое необходимо отогнать при выделении экстрагируемого вещества, в десятки раз превышает количество самого экстрагированного вещества, что приводит к большим энергетическим затратам.

3 Технологическая часть

3.1 Описание принципиальной технологической схемы производства

Технологические особенности процесса .

Основной особенностью процесса прямой гидратации этилена является малая степень конверсии этилена за один проход - не выше 4,5%. Этим обусловлена необходимость рециркуляции значительных его количеств.

Ввиду высокой кратности циркуляции этилена в системе возможно накопление инертных примесей, поэтому содержание их в исходном этилене не должно превышать 2-5%. Эти примеси представляют собой метан и этан. В результате циркуляции непревращенного этилена концентрация примесей в циркулирующем этилене возрастает, а концентрация этилена снижается. Заданную концентрацию этилена в циркуляционном газе поддерживают путем отдувки части циркулирующего газа в систему газофракционирования. Поскольку в циркулирующем этилене инертных примесей больше, чем в свежем, при отдувке можно вывести из системы все поступающие туда инертные примеси.

Большие объемы циркулирующего газа нужно охлаждать после реакции и вновь нагревать перед подачей в реактор, поэтому при гидратации большую роль играет выбор эффективных способов охлаждения.

Важное значение в процессе имеет также регенерация тепла, необходимая для снижения расхода пара или топлива на нагрев сырья и уменьшения расхода воды на охлаждение продуктов. Кроме того, при рациональной схеме регенерации тепла может быть значительно понижен или полностью исключен расход пара высокого давления, необходимого для проведения собственно гидратации.

Реакция прямой гидратации этилена идет с выделением значительного количества тепла. Однако вследствие низкой степени конверсии этилена выделяющееся тепло расходуется на нагревание самого этилена и водяного пара, причем в реакторе адиабатического типа (без отвода тепла) перепад температуры парогазовой смеси не превышает 10-20 о С, что вполне допустимо. Поэтому проблемы отвода тепла в этом процессе не возникает.

Еще одной особенностью процесса является унос фосфорной кислоты вследствие пропускания значительного количества парогазовой смеси через слой катализатора. Унос кислоты парогазовой смесью, по опытным данным, составляет 0,5г/ч с 1 л катализатора или 1,5-3 кг в расчете на 1 т спирта.

Активность катализатора в процессе работы снижается вследствие уноса кислоты и зауглероживания. Срок службы катализатора составляет 400-500 ч. Затем катализатор регенерируют путем выжигания кокса и нанесения фосфорной кислоты. Срок службы катализатора можно увеличить до 900-1000 ч, добавляя фосфорную кислоту в парогазовую смесь на входе в реактор.

В качестве сырья для процесса прямой гидратации используется технический этилен, содержащий 98-99,9% С 2 Н 4 .

Технологическая установка производства этанола прямой гидратацией этилена состоит из трех отделений: гидратации этилена, ректификации водно-спиртового конденсата, катализаторного отделения.

Технологическая схема отделения гидратации изображена на рис. 1. Этиленовая фракция из цехов газоразделения через буфер поступает на прием поршневого одноступенчатого компрессора 2. Сжатая до 70 кгс/см 2 фракция поступает на смешение с обратным циркулирующим газом в кольцевой коллектор. Циркулирующим газом называют газ, который с нагнетательной линии компрессора 3, пройдя весь агрегат гидратации, возвращается на прием компрессора 3. Подпитанный свежим этиленом циркулирующий газ из кольцевого коллектора идет на прием циркуляционных компрессоров 3. Обратный циркулирующий газ из аппаратов гидратации поступает в кольцевой коллектор поеле скруббера 13. Компрессор 3 сжимает газ до давления не более 80 кгс/см2 и подает его в межтрубное пространство теплообменника 5, где газ подогревается за счет тепла обратного газа. Сжатый компрессором 3 газ принято называть прямым газом, а газ, прошедший реактор гидратации, - обратным газом.

Прямой газ из теплообменника 5 поступает в межтрубное пространство теплообменника 10, где подогревается обратным циркулирующим газом до 190-215 о С. Из межтрубного пространства теплообменника 10 нагретый газ поступает в трубное пространство подогревателя 4, где паром высокого давления подогревается до 220-269 °С. Паровой конденсат из подогревателя 4 дросселируют до 6 кгс/см 2 и собирают в пароотделителе, а оттуда отводят в цеховую емкость-сборник. Образовавшийся при дросселировании пар отводят из пароотделителя в линию пара под давлением 6 кгс/см 2 . Прямой газ после подогревателя 4 смешивается с паром высокого давления (80-100 кгс/см2, ^440 °С) в массовом соотношении 1: (0,35-0,43). Смешение происходит в тройнике перед реактором 9.

Паро-газовая смесь при 273-295 °С поступает в верхнюю часть реактора (гидрататора) 9 и проходит сверху вниз через слой катализатора. Около 4% этилена из паро-газовой смеси гидратируется при этом в этиловый спирт.

Выходящие из реактора с температурой не выше 310 °С продукты уносят некоторое количестве фосфорной кислоты. Для ее нейтрализации в паро-газовую смесь впрыскивают водно спиртовый раствор щелочи с концентрацией NaOH 0,25-0,5% (масс), подаваемый в тройник нейтрализации насосом 17 из емкости 16. Подщелоченный водно-спиртовый конденсат готовят следующим образом: 42%-ный раствор NaOH (содержание Na2C03 не более 2%, по ГОСТ 2263-59) со склада поступает в сборник 19, откуда насосом 18 подается на смешение с водно-спиртовым конденсатом, поступающим из коллектора через холодильник 15. Приготовленный конденсат собирается в емкости 16. Подачу конденсата регулируют по температуре паро-газовой смеси после тройника нейтрализации: она не должна быть выше 240 °С.

Нейтрализованная паро-газовая смесь и солевой раствор проходят последовательно трубное пространство теплообменника 10 и котлов-утилизаторов 7 и 8. Охлаждение паро-газовой смеси в котлах-утилизаторах проводится за счет испарения парового конденсата, подаваемого центробежным насосом из цеховой емкости-сборника. Из котла-утилизатора 7 отводится пар давлением 5-6 кгс/см 2 , а из котла-утилизатора 8 пар давлением до 3 кгс/см 2 .

Пар из котлов-утилизаторов направляют в соответствующие коллекторы. Его используют при ректификации водно-спиртового конденсата, а избыток направляют в общезаводскую сеть. Паровой конденсат возвращают в цеховую емкость-сборник. Для компенсации потерь парового конденсата предусмотрена подача в емкость умягченной воды и парового конденсата из общезаводских коллекторов.

После котла-утилизатора 8 паро-газовая смесь и водно-спиртовый конденсат поступают в сепаратор 11, где конденсат отделяется от паро-газовой смеси. Паро-газовая смесь проходит затем последовательно трубное пространство теплообменника 5 и холодильника 6, в которых происходят охлаждение циркулирующего газа до 35 °С и конденсация паров спирта и воды. Обратный газ и водно-спиртовый конденсат из холодильника 6 поступают в скруббер 13. Там спирт из циркулирующего газа отмывают фузельной водой, получаемой при ректификации «концентрированного» водно-спиртового конденсата. Обратный газ из скруббера 13 поступает в кольцевой коллектор, а водно-спиртовый конденсат («концентрированный») дросселируют до давления не выше 6 кгс/см 2 и отводят в емкость 12(1). Оттуда «концентрированный» водно-спиртовый конденсат проходит через межтрубное пространство теплообменника 14, где подогревается, и уходит на ректификацию. «Слабый» водно-спиртовый конденсат из сепаратора 11 дросселируется до давления не более 6 кгс/см 2 , поступает,в емкость 12(11), далее проходит теплообменник 14, где охлаждается, и тоже направляется на ректификацию. Часть конденсата после холодильника 14 проходит межтрубное пространство холодильника 15 и поступает в емкость 16 на приготовление подщелоченного водно-спиртового конденсата. Избыток «слабого» и «концентрированного» водно-спиртового конденсата при необходимости сбрасывают в емкость 20. Для подачи конденсата из емкости 20 на ректификацию установлен насос 21.

В газоотделителях 12(1) и 12(11) вследствие сброса давления до 6 кгс/см 2 происходит выделение газов, растворенных в конденсате. Эти отдуваемые газы, проходя имеющийся.на каждой емкости 12 небольшой скруббер с насадкой, орошаемой фузельной водой для отмывки паров спирта, по коллектору отдувки низкого давления поступают в цех газоразделения (совместно с газом пиролиза).

Для вывода из. системы инертных газов (метан, этан и др.) часть газа из верхней части кольцевого коллектоpa при 40-45 кгс/см2 передают через подогреватель вцех газоразделения совместно с газом пиролиза.

Обычно «концентрированный» и «слабый» конденсат подвергают ректификации в разных колоннах, но возможна и совместная переработка в одной колонне при условии подачи их на разные тарелки. При этом «концентрированный» конденсат вводят в колонну на несколько тарелок выше по отношению к «слабому». Ниже приведена схема ректификации только «концентрированного» конденсата, так как работа иустройство колонн и соответствующего оборудования одинаковы.

Ректификационная колонна состоит как бы из двухколонн, поставленных одна на другую. Нижняя часть колонны называется исчерпывающей, а верхняя - укрепляющей. Границей между ними служит тарелка питания (17-я при переработке «концентрированного» конденсата, 24-я в случае «слабого»), на которую непрерывно подается сырье.

Исчерпывающая часть колонны служит для извлечения остатков легкокипящего компонента (спирта) из вы-сококипящего (воды). Эта часть соединена с трубчатым кипятильником 14 обогреваемым водяным паром. В кипятильнике происходит частичное испарение циркулирующего через неге кубового продукта (фузельной воды). Циркуляция фузельной воды происходит за счет перепада давлений, создаваемого столбами некипящей жидкости в кубе и кипящей в кипятильнике при «110°С и 0,5 кгс/см 2 . Фузельная вода из куба колонны 1 проходит водяной холодильник 13, где охлаждается до 40 °С. Часть фузельной воды после холодильника 13 сбрасывают в канализацию, а остальное поступает в емкость 12 для орошения скруббера в отделении гидратации. Фузельная вода из куба колонны, перерабатывающей «слабый» водно-спиртовый конденсат, после холодильника сбрасывается в канализацию.

Пары спирта-ректификата с верха колонны 1 при 90 °С и 0,2 кгс/см 2 поступают в дефлегматор 2, где конденсируются и охлаждаются водой. Конденсат из дефлегматора 2 поступает в емкость 16, откуда насосом 15 частично подается в виде флегмы в верхнюю часть колонны 1 ; остальной конденсат (спирт-ректификат) направляется на очистку от ацетиленовых соединений. Несконденсировавшиеся в дефлегматоре 2 пары спирта поступают в конденсатор 3, где конденсируются; конденсат также направляется в емкость 16.

Полученный в колонне 1 спирт-ректификат подогревается очищенным спиртом в теплообменнике 4 и через паровой подогреватель 5 поступает в колонну 6, где от спирта отгоняется ацетилен. Вместе с ацетиленом уходит также некоторое количество эфира, альдегида и спирта. Температуру в кубе колонны 6 поддерживают в интервале 80-90 °С за счет обогрева глухим паром, подаваемым в кипятильник 20. Из куба колонны 6 отбирается готовый спирт-ректификат. Он проходит теплообменник 4, водяной холодильник 19 и поступает в емкость 18, откуда насосом 17 откачивается на склад.

Отходящий с верха колонны 6 поток проходит водяной холодильник 7 и поступает в колонну 8 для извлечения остатков спирта. С верха этой колонны пары, содержащие ацетилен, направляются в дефлегматор 9, флегма из которого стекает в сборник 23, а оттуда насосом 22 подается на орошение колонны 8. Несконденси-ровавшиеся пары из дефлегматора 9 идут в рассольный конденсатор 10, оттуда конденсат стекает в сборник 18. При наличии ацетилена в спирте отбор ведут в емкость 16 , а несконденсировавшиеся газы направляют в линию отдувки низкого давления. В кубе колонны 8 поддерживают температуру 60°С за счет обогрева глухим паром, подаваемым в кипятильник 21. Выводимый из куба колонны 8 спирт поступает в емкость 16.

Реактор предназначен для проведения гидратации этилена; конструктивно он представляет собой пустотелый вертикальный аппарат. Реактор состоит из цилиндрического кованого корпуса внутренним диаметром 1260 мм и двух приваренных к нему сферических днищ. Общая высота аппарата 10600 мм. Корпус, днища и люки изготовлены из стали. Температура в аппарате допускается до 310°С, Давление до 80 кгс/см 2 . Реактор теплоизолирован.

В реактор загружают фосфорнокислотный катализатор, который создает кислую коррозионную среду. Для защиты от коррозии аппарат футерован медными листами, полностью прикрывающими его внутреннюю поверхность. Медную футеровку навешивают на внутренние стенки реактора кольцевыми поясами с помощью сварки. Пространство между поясами тщательно герметизируют. Медную футеровку укрепляют с таким расчетов чтобы она не сползала при выгрузке отработанного катализатора. Под влиянием рабочей среды футеровка становится хрупкой, и ее герметичность в таком состоянии может легко нарушаться. Поэтому футеровку после каждого пробега катализатора тщательно осматривают и при наличии растрескиваний заменяют дефектные места.

Реактор имеет два люка (верхний для загрузки катализатора и входа исходной парогазовой смеси и нижний для выгрузки катализатора и выхода продуктов), три штуцера для термопар и штуцер в верхней части для аварийного сброса давления через предохранительный клапан (или вручную - по шунту к клапану).

Загрузку катализатора проводят в следующем порядке. Устанавливают тройник нейтрализации на нижнем люке реактора, причем между фланцами нижнего люка и тройника устанавливают вершиной вверх конус из медного листа с отверстиями. Число отверстий в конусе делается таким, чтобы их суммарная площадь была бы меньше сечения трубопровода на выходе из реактора. Через верхний люк на верх конуса насыпают 0,4 м 3 колец Рашига, 0,5-1 м 3 не пропитанного кислотой носителя и 9-10 м 3 катализатора. Катализатор к месту загрузки Доставляют в бункерах, вмещающих 1 м 3 катализатора Бункер из катализаторного отделения в отделение гидратации привозят автопогрузчиками. Далее бункер на тележке передвигают в монтажный проем, откуда пневмотельфером поднимают на верхний этаж. Выгружают катализатор через нижний люк, самотеком в бункер.

При эксплуатации реактора требуется учитывать его конструктивные особенности. Например, нельзя резко сбрасывать давление во избежание вспучивания футеровки. Нужно выдерживать заданное соотношение между циркулирующим, газом и паром во избежание конденсации пара и, следовательно, коррозии стенок реактора.

Скруббер предназначен для разделения водно-спиртового конденсата и циркулирующего газа и отмывки из последнего несконденсировавшихся паров спирта фузельной водой. Контакт между газом и водой при отмывке осуществляется на кольцах Рашига, загруженных слоем высотой 2,5 м. Для отделения капель жидкости, уносимых газом, в верхней части аппарата установлен отбойный пакет из нескольких вертикальных рядов проволочной сетки. Водно-спиртовый конденсат собирается в кубе аппарата.

Аппарат состоит из цилиндрического корпуса и двух приваренных днищ. Входной штуцер для парожидкостной смеси расположен в кубовой части аппарата, а штуцер ввода фузельной воды - выше слоя колец Рашига. Над входным штуцером установлена опорная решетка для колец Рашига. Аппарат имеет люки для внутреннего осмотра, а также для выгрузки колец Рашига. Ректификационная колонна предназначена для ректификации водно-спиртового конденсата. Она представляет собой цилиндрический аппарат с 50 решетчатыми тарелками. Колонна имеет 4 люка для внутреннего осмотра аппарата и чистки тарелок. Загрязняются обычно тарелки исчерпывающей части; их периодически очищают. Тарелка представляет собой металлический диск с рядами параллельных прорезей размером 150X4 мм. Тарелка не имеет сливных стаканов; она состоит из. отдельных листов - секций, укрепленных на балках каркаса планками и болтами. Тарелки устанавливают таким образом, что прорези двух соседних тарелок оказываются перпендикулярными друг другу. Тарелка питания представляет собой диск с большими отверстиями для прохода паров и маленькими отверстиями для слива жидкости; отверстия равномерно расположены по всей тарелке. Тарелки питания устанавливаются на приеме сырья и на приеме флегмы. Колонна оснащена штуцерами для подвода пара от кипятильника, для отвода паров в дефлегматор, для приема флегмы и питания, для отвода кубового продукта, для подключения регулятора уровня в кубе, бобышками для отбора импульсов давления и температуры.

Процесс производства синтетического этилового спирта методом прямой гидратации этилена связан с применением и образованием токсичных, взрывоопасных и пожароопасных веществ.

Для уменьшения и предотвращения вредных выбросов в атмосферу газов, содержащих токсичные углеводороды,(этилен, диэтиловый эфир, ацетальдегид и др.) имеются следующие возможности:

· строгое соблюдение технологического режима (при этом снижается количество выбросов через предохранительные клапаны и воздушники, уменьшаются частота остановок и связанное с ними сбрасывание газов);

· монтаж и эксплуатация оборудования в соответствии с правилами (это предупреждает газовые выбросы через неплотности).

Процесс синтеза этилового спирта сопровождается значительным уносом фосфорной кислоты, которая может вызвать коррозию оборудования и трубопроводов. Поэтому одной из стадий процесса является нейтрализация продуктов реакции, выходящих из гидрататора в парогазовой фазе путем взаимодействия с подщелоченным водно-спиртовым конденсатом. Образующиеся при нейтрализации соли фосфорной кислоты (0,4-0,5 кг на 1 т спирта) растворяются в водно-спиртовом конденсате и пройдя вместе с продуктами реакции через теплообменник-рекуператор, котлы-утилизаторы, сепараторы и т.д. поступают на узел ректификации и выводятся из системы вместе с обратной промывной водой в канализацию.

В процессе гидратации этилена образуются побочные продукты: диэтиловый эфир, ацетальдегид, полимеры этилена, являющиеся отходами производства. Значительная часть этих соединений удаляется при ректификации и очистке этилового спирта.

С целью улучшения качества спирта и снижения содержания углеводородов в сточных водах производства синтетического этанола в настоящее время на стадии переработки спирта-сырца проводится отвод жидкостной фазы (в составе которой отходы производства - полимеры) с содержанием спирта 40 - 80 об. % с последующим ее разбавлением до содержания спирта 10 - 20 об. % и направлением в отстойник.

Полимеры, являясь водонерастворимыми органическими продуктами, хорошо растворяются в этиловом спирте и в процессе ректификации накапливаются в колонне, достигая максимальной концентрации (17 - 35 об. %) в той части колонны, где концентрация спирта 40 - 80 об.%.

Выделившиеся при разбавлении полимеры отделяют от водноспиртового слоя во флорентийском сосуде, выводят в сборник и далее в канализацию, а водноспиртовой слой направляют обратно в колонну на тарелку питания.

Способ позволяет улучшить качество стоков по химическому поглощению кислорода на 60 - 65 %, что облегчает очистку сточных вод на биоочистных сооружениях.

Для поддержания высокой концентрации этилена (98,5 %)в процессе гидратации проводят отдувку циркулирующего газа, который после отмывки паров спирта в скруббере, поступает в цех газоразделения для переработки совместно с газом пиролиза.

Для вывода с установки инертных газов (метан, этан и др.) часть газа из верхней части кольцевого коллектора при 40 - 45 кгс/см 2 передают через подогреватель в цех газоразделения для переработки.

6 Мероприятия по технике безопасности, промсанитарии, пожарной безопасности и охране труда

Производство синтетического этилового спирта относится к пожаро- и взрывоопасным производствам. Кроме того, в цехе используются токсичные и едкие вещества. Основными моментами, определяющими опасность в цехе, являются:

1) наличие жидких и газообразных продуктов, образующих с воздухом взрывоопасные смеси с низким пределом взрываемости;

2) ведение процесса при высоких давлениях (до 100 кгс/см 2) и высоких температурах (до 450 °С);

3) наличие тока высокого напряжения для электродвигателей;

4) токсичность сырья, вспомогательных материалов и готовой продукции;

5) образование зарядов статического электричества при движении газов и жидкостей по трубопроводам и аппаратам;

6) ведение сварочных работ внутри реакторов.

6.1 Х арактеристика производства по взрыво- и пожароопасности

Процессы гидратации этилена, ректификации и очистки спирта являются закрытыми и осуществляются по непрерывной схеме. Появление газа или паров в производственном помещении возможно только вследствие неисправности оборудования или при авариях. Помещения цеха по взрываемости относятся к классу В-1а, наружные установки к классу В-1г, катализаторное отделение - невзрывоопасное.

По пожаро- и взрывоопасности цех относится к категории «А», так как во всех отделениях имеются вещества с нижним пределом взрываемости 10% и менее, а также легковоспламеняющиеся жидкости (т. всп. 28 °С и ниже) в количествах, достаточных для образования взрывоопасных смесей. В компрессорном зале и отделении ректификации имеется этилен; в насосных и на установке удаления ацетилена из спирта имеются этиловый спирт и диэтиловый эфир; в катализаторном отделении применяют метано-водородную фракцию в качестве топлива.

Если концентрация этих продуктов в воздухе находится между верхним и нижним пределами взрываемости и имеется источник воспламенения, возможен взрыв; при концентрации этих продуктов выше верхнего предела взрываемости и при наличии источника воспламенения возможен пожар.

При монтировании электрооборудования следует учитывать, что технологическая среда производственных помещений установки по взрываемости имеет такую характеристику согласно ПИВРЭ (Правила изготовления взрывобезопасного и рудничного электрооборудования): по этилену ЗТ1, по этанолу 2Т2, по диэтиловому эфиру 2Т4 (где первая цифра - категория взрывоопасной смеси, Т1, Т2, Т4 - группы взрывоопасности смеси).

По санитарным условиям производство этанола относится к производствам П-д, для которых в бытовых помещениях предусмотрены гардеробная, умывальная и душ. По количеству выделяющегося от оборудования тепла помещения реактора и паровых коллекторов относятся к горячим отделениям; для таких производственных помещений предусмотрен 8-кратный обмен воздуха в час.

6.2 Свойства сырья и вспомогательных материалов

Этиленовая фракция , содержащая 98-99% (об.) С 2 Н 4 . Горючий газ. Смесь этилена с воздухом взрывоопасна, ядовита, действует на центральную нервную систему. Предельно допустимая концентрация этилена в помещении 500 мг/м 3 .

Метано-водородная фракция , содержащая 89-90% СН 4 и 5-10% Н 2 . Указанные вещества не ядовиты, но при большом содержании их в воздухе затрудняется дыхание из-за недостатка кислорода. С воздухом образует взрывоопасные смеси.

Этиловый спирт ядовит, действует на центральную нервную систему, при попадании в организм в небольших количествах вызывает опьянение, в больших - состояние, близкое к наркозу, иногда заканчивающееся смертью. Предельно допустимая концентрация паров спирта в помещении 1000 мг/м 3 .

Диэтиловый эфир обладает наркотическими свойствами, действуя на центральную нервную систему. Пары эфира с воздухом образуют взрывоопасные смеси. Предельно допустимая концентрация паров диэтилового эфира в помещении 300 мг/м 3 .

Инертный газ состоит из азота (до 86%), двуокиси углерода (до t2%) и кислорода (до 2%); СО быть не должно. При большом скоплении инертного газа в помещении снижается содержание кислорода, что может привести к кислородному голоданию организма. Иногда в инертном газе содержится окись углерода; она вызывает головные боли при вдыхании небольших количеств, обморочное состояние и смерть при вдыхании больших количеств.

Азот не ядовит, но при большом скоплении в помещении снижает содержание кислорода. Технический азот, подаваемый в цех, содержит до 0,1% кислорода.

Фосфорнокислотный катализатор , содержащий не менее 48% Н 3 Р0 4 и до 52% силикагеля. Катализаторная пыль вызывает раздражение дыхательных путей. Предельно допустимая концентрация катализаторной пыли в помещении 2 мг/м 3 .

Ортофосфорная кислота (60-80%-ная) при попадании на кожу вызывает ожоги.

Едкий натр (40%-ный раствор) - едкая жидкость. При попадании на кожу вызывает ожоги с образованием язвочек. Особенно опасно попадание щелочи в глаза.

6.3 Основные правила работы с токсичными газами и едкими веществами

Общими средствами защиты от углеводородных газов и паров, применяемыми в производственных помещениях, являются проветривание помещений (естественная вентиляция), приточная, вытяжная и аварийная вентиляция.

В качестве индивидуальных средств защиты органов дыхания и зрения работающих используются промышленные фильтрующие противогазы. Применение фильтрующих противогазов возможно только в атмосфере, содержащей не менее 16% (об.) свободного кислорода и не более 0,5°/о (об.) вредных веществ..

Общими средствами защиты от пыли катализатора и силикагеля служат вытяжные вентиляционные и аспирационные установки, а также воздухозаборники, устанавливаемые в местах пылевыделения. Индивидуальными средствами защиты от пыли являются респираторы типа «лепесток» одноразового пользования.

Защитными средствами от едких жидкостей (кислот, щелочей) являются наголовные щитки, очки, шлем-маски от противогазов, прорезиненные фартуки и перчатки, резиновые сапоги. При работе со щелочью необходимо быть в хлопчатобумажной спецодежде, при работе с кислотой - в суконной.

При проведении работ в слабо вентилируемых помещениях, емкостях, колодцах, траншеях и т. д. применяют шланговые противогазы. В тех случаях, когда нельзя работать в шланговом противогазе, применяют газоизолирующий аппарат.

При загазованности помещения первый, кто это заметил, должен сообщить в газоспасательный отряд по телефону и начальнику смены, а сам до прибытия дежурного по отделению должен принять меры по устранению причины загазованности, усилению вентиляции и предупреждению обслуживающего персонала.

6.4 Основные правила пожарной безопасности

Взрыв или пожар могут произойти при концентрациях углеводородов, спирта, диэтилового эфира в интервале от нижнего до верхнего пределов взрываемости.

Возбудителями взрыва или воспламенения являются:

1) открытое пламя (курение или ведение огневых работ в цехе);

2) самовоспламенение продуктов (сернистого железа, образующегося в аппаратах при наличии сероводорода в перерабатываемом газе, а также углеводородных полимеров, образующихся в процессе переработки непредельных углеводородов);

3) искра при ударе металла о металл или камень;

4) образование искры при работе на неисправном электрооборудовании;

5) статическое или атмосферное электричество.

В целях соблюдения мер пожарной безопасности в цехе и недопущения пожаров и загораний необходимо весь цех (территорию, технологические установки, резервуарные парки, склады, мастерские, служебно-бытовые помещения и прочие объекты) содержать в чистоте и порядке. Кроме того, не допускается загромождение проезжих дорог, подъездов, подступов к зданиям и сооружениям, путей эвакуации, проходов и выходов из зданий, площадок вокруг производственного оборудования, подступов к противопожарному инвентарю и средствам связи посторонними предметами.

Условия проведения огневых работ в цехе такие:

1) в компрессорном отделении цеха разрешаются временные огневые работы по пайке электродвигателей, компрессоров. Двигатель, ремонтируемый с применением временных огневых работ, отключают от коммуникаций заглушками и продувают инертным газом до отсутствия в цилиндрах двигателя непредельных углеводородов;

2) систему гидратации, на которой проводятся временные огневые работы, нужно остановить. Давление из системы сбрасывают, а участок, на котором проводятся временные огневые работы, отключают заглушками от аппаратов и коммуникаций и пропаривают до полного отсутствия углеводородов; анализ воздуха в месте сварки должен показывать отсутствие углеводородов;

3) при проведении огневых работ внутри реактора требуются следующие дополнительные условия: во время проведения огневых работ с помощью вытяжной вентиляции отсасывают воздух из реактора; решетки под реактором закрывают асбестовым одеялом с целью избежать попадания искр на этот этаж отделения.

Все средства пожаротушения, пожарное оборудование и инвентарь должны содержаться на установленных местах в полной исправности и готовности к немедленному использованию.

Не допускается розлив жидких углеводородов и нефтепродуктов, а также утечка газов через фланцевые соединения, сальники насосов и запорную арматуру.

В случае возникновения пожара или аварии необходимо немедленно сообщить в пожарную команду по телефону 01 или по извещателю и одновременно принять меры по ликвидации аварии и тушению пожара имеющимися средствами пожаротушения: водой, песком, паром, асбестовыми одеялами, огнетушителями.

При тушении электрооборудования можно применять воду и пар; пенный огнетушитель разрешается использовать только после снятия напряжения.

Заключение

Производство этилового спирта в нашей стране играет важную роль в народном хозяйстве.

Гидратация этилена - наиболее эффективный способ производства этилового спирта, позволяющий экономить по сравнению с его получением из пищевого сырья на 1т этилового спирта около 4 т зерна или до 12 т картофеля.

На получение 1 т этилового спирта из пищевого сырья затрачивается от 160 чел.-час (из зерна) до 280 чел.-час. (из картофеля), из нефтехимического сырья - 10 чел.-час.; значительно меньше капитальных затрат потребуется на строительство заводов синтетического этилового спирта по сравнению с заводами пищевого этилового спирта.

Метод получения этилового спирта сернокислотной гидратацией этилена в настоящее время несколько устарел, кроме того он является небезопасным. Опасность данного метода обуславливается прежде всего использованием концентрированной серной кислоты и жёсткими технологическими параметрами процесса. Использование того или иного способа производства во многом обуславливается качеством сырья, а именно – содержанием этилена в исходной фракции.

Прямая гидратация этилена имеет ряд преимуществ перед сернокислотным методом: исключение расхода серной кислоты и минимальные потребности в других реагентах, кроме этилена и водяного пара. Кроме того, процесс прямой гидратации этилена протекает в одну стадию, что обуславливает более высокий выход спирта.

Этиловый спирт применяется в пищевой, химической промышленности, в парфюмерии и медицине, поэтому необходимо следить за соответствием получаемого спирта ГОСТам нашей страны. Сейчас в России довольно сложная ситуация с потреблением алкоголя населением. Нашей пищевой промышленности нужен контроль за качеством спирта, за подпольным производством и незаконной продажей спиртных напитков. Таким образом, возможно, уменьшить смертность населения, и употребление алкоголя станет более безопасным.

1. Валакин В.П. Получение синтетического этилового спирта. М., Химия, 1976.

2. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. Изд. 3-е, перераб. М., Химия, 1981 г.

3. Справочник. Расчёты химико-технологических процессов. Под общей редакцией проф. И. П. Мухлёнова. Л., «Химия», 1976 г.

4. Справочник. Краткий справочник физико-химических величин. Изд. 8-е, пер./Под ред. А.А. Равделя и А.М. Пономарёвой. Л., Химия, 1983 г. 232с.

5. Юкельсон И.Ю.Технология основного органического синтеза. М.,Химия, 1968 г.

6. Паушкин Я.М. Нефтихимический синтез в промышленности. М.,Наука,1966 г.

Приложения

Рис. 1. Схема отделения прямой гидратации этилена:

1 - буфер; 2 - компрессор свежего этилена; 3 3 12 – прорези; 13 – отверстия для слива жидкости; 14 – отверстия для прохода паров.

Этиловый спирт (винный спирт, этанол) широко использу­ется в различных отраслях народного хозяйства. В технических отраслях используется технический этиловый спирт, получаемый і(з этиленсодержаших газов, древесины и отходов производства целлюлозы. В отраслях пищевой промышленности (консервная и витаминная, виноделие, производство ликеро-водочных изде­лий), а также в медицинской промышленности используется пи­щевой спирт, получаемый из пищевого сырья.

Этиловый спирт представляет собой бесцветную, прозрачную жидкость с характерным запахом и жгучим вкусом. Он смеши­вается с водой в любых соотношениях. Температура кипения спирта при нормальном давлении 78,3°С, температура замерза­ния минус 117°С. Этиловый спирт гигроскопичен, поглощает влагу из воздуха, из растительных и животных тканей, вызывая их разрушение. Химически чистый этиловый спирт имеет ней­тральную реакцию; спирт, вырабатываемый пищевой промыш­ленностью, имеет слабокислую реакцию, обусловленную при­сутствием органических кислот. Спирт и его крепкие водные растворы легко воспламеняются и горят пекоптящим пламенем. Пары спирта вредны для человека, предельно допустимая их концентрация в воздухе I мг/л. Спирт взрывоопасен.

Существует два способа получения спирта: биохимический (микробиологический) и химический. В основе первого способа лежит сбраживание Сахаров дрожжами. По второму спирт по­лучают из этилена путем его гидратации.

Биохимическим путем спирт получают из растительного сырья, содержащего большие количества углеводов.

Технология производства спирта (рис. 6.1) состоит из сле­дующих стадий:

1) подготовка крахмалсодержащего сырья и осахаривающих материалов;

2) разваривание крахмалсодержащего сырья;

3) осахаривание крахмалсодержащего сырья;

4) культивирование дрожжей;

5) сбраживание осахапенной массы (на рис. 6.1 эта стадия обозначена «Возбраживание сусла»);

6) извлечение спирта из бражки и его очистка.

Сырье спиртового производства

Основным видом сырья в производстве пищевого спирта яв­ляется растительное сырье, богатое крахмалом (зерновые куль­туры, картофель), сахаром (меласса, сахарная свекла) и клет­чаткой ().

Картофель - лучший вид сырья для спирта. С единицы посевной площади из картофеля можно получить в среднем в 3 раза больше крахмала, чем из зерновых культур, а, следовательно, и больше спирта. Кроме того, картофельный крахмал дает более высокий выход спирта. На спиртовых заво­дах перерабатывают технические сорта картофеля, удовлетво­ряющие следующим требованиям: высокая крахмалистость, вы­сокая урожайность, стойкость к заболеваниям, устойчивость при хранении. К основным сортам, перерабатываемым на спирт, от­носятся Лохвицкий, Немешаевский юбилейный, Остботе, Вольт - ман и другие. Картофель, поступающий на спиртовые заводы, сортируют на полноценные клубни, закладываемые на хранение, и поврежденные, отправляемые на переработку. Хранят карто­фель преимущественно в буртах.

Зерновые культуры используются в спиртовом производстве, во-первых, для получения солода, необходимого для осахарива - ния крахмала, и во-вторых, непосредственно перерабатываются на спирт. Для приготовления солода используют ячмень, овес, просо, рожь, удовлетворяющие целому ряду требований (влаж­ность, содержание сора и зерновой примеси, способность и энер­гия прорастания). Качество зерна, поступающего на непосред­ственное получение спирта, не регламентируется, но желательно, чтобы оно имело высокую крахмалистость. Для получения спир­та используются рожь, пшеница, ячмень, кукуруза, овес и просо.

Химический состав зерновых злаков зависит от их сорта, почвенно-клнматических условий выращивания и других фак­торов. В среднем зерно злаков содержит 14-15% воды и 85-- 86% сухого вещества. Содержание крахмала в зерне пшеницы может изменяться в пределах 49-73%, ржи - 55-73%, ячме­ня - 45-68%, овса -24-64%, кукурузы - 61-83%, проса - 51-70%, риса - 48-68%. Общее содержание Сахаров в зрелом зерне 2-5%.

В спиртовом производстве суммарное содержание в перера­батываемом сырье крахмала и Сахаров называют крахмали­стое тыо.

Как сырье для производства спирта, хлебопекарных дрожжей и других продуктов бродильных производств используется ме­ласса, являющаяся побочным продуктом свеклосахарного про­изводства. Она представляет собой темно-коричневую вязкую жидкость. Химический состав мелассы зависит от качества свек­лы и условий ее переработки на сахарных заводах. Средний химический состав мелассы следующий (в %): вода-18-25; сахароза - 45-50; инвертный сахар - 0,5; рафиноза - 2; не - сбраживаемые вещества (несахара) -35-40. .

Предприятия спиртовой промышленности потребляют значи­тельное количество воды. Источниками водоснабжения спирто­вых заводов являются реки, пруды, артезианские скважины. Качество воды оказывает большое влияние на технологические процессы. Важным показателем качества воды является жест­кость, окисляемость, ."бактериальная чистота. Различают жест­кость общую, карбонатную и некарбонатную. Общая жесткость

Воды обусловлена присутствием в ней солей кальция и магния* Карбонатная жесткость (временная) обусловлена наличием гид-;! рокарбоиатов кальция и магния, которые при кипячении воды превращаются в карбонаты и выпадают в осадок. Некарбонат­ная (постоянная) жесткость обусловлена наличием в воде хло­ридов, сульфатов и других солей кальция и магния, которые при кипячении не выпадают в осадок. Общая жесткость равна сумме карбонатной и некарбонатной жесткости.

Окисляемостью воды называют способность веществ, содер­жащихся в воде, реагировать с окислителями. Ее выражают количеством миллиграммов кислорода, необходимого для окис­ления веществ, содержащихся в 1 л воды. Окнсляемость харак­теризует степень загрязнения воды органическими веществами.

Бактериальная чистота воды характеризуется общим числом микроорганизмов в I мл воды и числом бактерий кишечной группы.

Вода, используемая в спиртовом производстве, должна удов­летворять требованиям, предъявляемым к питьевой воде, кроме того, нежелательно использовать воду с высокой карбонатной жесткостью и щелочностью.

Внимание: данная статья носит ознакомительный характер. Всегда помните о вреде алкоголя.

Производство спирта состоит из нескольких этапов, выполнять которые нужно обязательно в последовательном порядке. Для получения чистого этилового спирта (более 40%), необходима перегонка и очистка исходного сырья. Основным преимуществом данной технологии является отсутствие значительных инвестиций на приобретение оборудования и многообразия исходного сырья.

Технология получения спирта включает в себя следующие этапы:

  • подготовка сырья;
  • разваривание зерна водой;
  • охлаждение и осахаривание;
  • сбраживание;
  • отгонка спирта;
  • ректификация.

В качестве зерна могут быть использованы ячмень, рожь, овес и другие зерновые. Не допускается затхлый и плесенный запахи. Строгой регламентации зерна, которое будет подвергнуто развариванию, не существует. Рекомендуется выбирать сырье с влажностью до 17% и небольшой засоренностью. Зерно очищают от пыли, земли, мелких камней, семян сорных растений и других посторонних примесей. Далее его отделяют на воздушно-ситовом сепараторе.

Мелкие металлические примеси подлежат удалению посредством магнитных сепараторов.

Разваривание зерна происходит с целью разрушения их клеточных стенок. В результате этого крахмал высвобождается и переходит в растворимую форму. В таком состоянии он намного легче осахаривается ферментами. Зерно обрабатывается паром при избыточном давлении 500 кПа. Когда разваренная масса выходит из варочного аппарата , сниженное давление приводит к образованию пара (из содержащейся в клетках воды).

Подобное увеличение в объеме разрывает клеточные стенки и превращает зерно в однородную массу. На сегодняшний день разваривание крахмалосодержащего сырья производят одним из трех способов: периодическим, полунепрерывным или непрерывным. Наибольшую популярность получил непрерывный метод. Температура разваривания составляет 172°С, а продолжительность варки около 4 минут. Для получения более качественного результата исходное сырье рекомендуется измельчать.

Сам процесс разваривания включает операции:

  • Строгая дозировка зерна и воды;
  • Нагрев замеса до температуры варения;
  • Выдержка массы при заданной температуре.

Измельченное зерно следует смешать с водой в количестве 3 литра на 1 кг. зерна. Зерновой замес нагревается паром (75°С) и подается насосом в контактное отверстие установки. Именно здесь происходит мгновенный нагрев кашицы до температуры 100°С. После этого подогретый замес помещается в варочный аппарат.

В процессе осахаривания в охлажденную массу добавляют солодовое молоко для расщепления крахмала. Активное химическое взаимодействие приводит к тому, что продукт становится абсолютно пригодным для дальнейшего процесса сбраживания. В результате получается сусло, которое содержит 18% сухого сахара с кислотностью 0,3 град. Когда из массы делается проба на йод, то окрас сусла должен оставаться неизменным.

Сбраживание сусла начинается при введении в осахаренную массу производственных дрожжей. Мальтоза расщепляется до глюкозы, которая в свою очередь сбраживается в спирт и диоксид углерода. Также начинают образовываться вторичные продукты брожения (эфирные кислоты и т.д.). Данный процесс должен проходить в закрытой бродильной установке, которая предотвратит потери спирта и выделение диоксида углерода в производственный цех.

Выделяющийся в процессе брожения диоксид углерода и пары спирта из бродильной установки поступают в специальные отсеки, где происходит отделение водно-спиртовой жидкости и диоксида углерода. Содержание этилового спирта в бражке должно равняться до 9,5 об.%.

Этиловый спирт можно узнать по запаху. Впрочем, отличить его таким образом можно лишь от весьма далеких по структуре веществ. Что же касается соединений одной с ним группы, все сложнее. Но это и интереснее.

Состав и формула

Этанол - а именно так звучит одно из его официальных названий - относится к простым спиртам. Он знаком практически всем под теми или иными наименованиями. Часто его называют просто спиртом, иногда прибавляют прилагательные "этиловый" или "винный", химики могут также назвать его метилкарбинолом. Но суть одна - С 2 Н 5 ОН. Эта формула знакома, пожалуй, практически всем еще со школьных времен. И очень многие помнят, насколько это вещество подобно своему ближайшему родственнику - метанолу. Проблема лишь в том, что последний крайне токсичен. Но об этом позже, сначала стоит рассмотреть подробнее этанол.

Кстати, в химии есть много похожих терминов, так что не стоит путать этиловый спирт, например, с этиленом. Последний является бесцветным горючим газом и совсем не похож на прозрачную жидкость с характерным запахом. А еще есть газ этан, и его название тоже созвучно с наименованием "этанол". Но это тоже совсем разные вещества.

Метиловый и этиловый

Уже долгие годы остается актуальной проблема массовых отравлений в связи с невозжностью отличить в домашних условиях два спирта. Контрафактный алкоголь, подпольное или просто некачественное производство - все это повышает риск плохой очистки и пренебрежения технологическими условиями.

Все это усложняется тем, что по своим основным свойствам метиловый и этиловый спирты - практически идентичные вещества, и неспециалист без нужного оборудования просто не сможет отличить один от другого. При этом смертельная доза метанола - 30 граммов, тогда как в случае с обычным спиртом такой объем совершенно безопасен для взрослого человека. Именно поэтому, если нет уверенности в происхождении напитка, лучше его не употреблять.

Что любопытно, антидотом для технического спирта является как раз чистый метанол. Так что, заметив признаки острого отравления, необходимо ввести раствор последнего внутривенно или принять перорально. Важно при этом не перепутать состояние интоксикации метанолом с обычным сильным алкогольным опьянением или отравлением. В этом случае, а также при отравлении некоторыми другими веществами ни в коем случае нельзя принимать дополнительно спирт этиловый. Цена ошибки может быть очень высокой.

Физические и химические свойства

Этанолу присущи все общие характеристики и реакции спиртов. Он бесцветный, обладает характерными вкусом и запахом. В нормальных условиях он жидкий, переходит в твердую форму при температуре -114 о С, а кипит при +78 градусах. Плотность спирта этилового составляет 0,79. Хорошо смешивается с водой, глицерином, бензолом и многими другими веществами. Легко улетучивается, так что хранить его нужно в хорошо закрывающихся емкостях. Сам является прекрасным растворителем, а также обладает отличными антисептическими свойствами. Очень огнеопасен как в жидком, так и в парообразном состоянии.

Этанол является психоактивным и наркотическим веществом, входит в состав всех спиртных напитков. Смертельной дозой для взрослого человека является 300-400 миллилитров 96 % раствора спирта, употребленного в течение часа. Эта цифра довольно условна, поскольку зависит от большого количества факторов. Для детей достаточно уже 6-30 миллилитров. Так что этанол является и достаточно эффективным ядом. Тем не менее, он широко используется, поскольку обладает рядом уникальных свойств, делающих его универсальным.

Разновидности

Существует несколько видов этилового спирта, используемых для разных целей. В основном они отражают способы получения вещества, но часто говорят и о различных методах обработки.

Так, надпись на упаковке "Спирт этиловый ректификованный" говорит о том, что содержимое прошло специальную очистку от примесей. Полностью очистить, например, от воды его довольно сложно, но можно максимально уменьшить ее присутствие.

Еще спирт может быть денатурированным. В этом случае все наоборот: к этанолу добавляют трудноустранимые примеси, делающие его непригодным для употребления внутрь, но не усложняющие применение по основному назначению. Как правило, в роли денатурата выступает керосин, ацетон, метанол и т. д.

Кроме того, различают спирт этиловый медицинский, технический, пищевой. Для каждой из этих разновидностей существует строгий стандарт, предусматривающий определенные критерии. Но о них поговорим чуть позже.

Кроме всего прочего, на упаковке часто указывается процент содержания. Это актуально, опять же, в связи с тем, что этанол сложно полностью очистить от воды, да и обычно в этом нет серьезной необходимости.

Получение

Производство этилового спирта предусматривает использование одного из трех основных способов: микробиологического, синтетического или гидролизного. В первом случае имеем дело с процессом брожения, во втором, как правило, задействуются химические реакции с применением ацетилена или этилена, ну а третий говорит сам за себя. Каждый из способов имеет свои плюсы и минусы, сложности и преимущества.

Для начала расмотрим этиловый спирт, который производится только для пищевых целей. Для его производства используется только метод брожения. В ходе этого процесса виноградный сахар распадается на этанол и двуокись углерода. Этот метод известен с глубокой древности и является наиболее естественным. Но он требует и большего количества времени. Кроме того, полученное вещество не является чистым спиртом и требует достаточного большого количества операций по обработке и очистке.

Для получения технического этанола брожение нецелесообразно, так что производители прибегают к одному из двух вариантов. Первый из них - сернокислая гидратация этилена. Она выполняется в несколько этапов, но есть и более простой метод. Второй вариант - прямая гидратация этилена в присутствии фосфорной кислоты. Эта реакция обратима. Впрочем, оба этих способа также несовершенны, и полученное вещество требует дальнейшей обработки.

Гидролиз - относительно новый метод, позволяющий получать этиловый спирт из древесины. Для этого сырье измельчается и обрабатывается 2-5 % серной кислотой при температуре 100-170 градусов по Цельсию. Этот метод позволяет получать до 200 литров этанола из 1 тонны древесины. По разным причинам гидролизный способ не слишком популярен в Европе, в отличие от США, где открывают все новые и новые заводы, работающие по этому принципу.

Стандарты

Весь этанол, который производится на предприятиях, должен соответствовать определенным стандартам. Для каждого способа получения и обработки есть свой, в котором указываются основные характеристики, которыми должен обладать конечный продукт. Рассматривается очень много свойств, например, содержание примесей, плотность спирта этилового, предназначение. Для каждой разновидности есть свой стандарт.

Так, например, синтетический технический спирт этиловый - ГОСТ Р 51999-2002 - делится на два сорта: первый и высший. Очевидное различие между ними - объемная доля этанола, которая составляет 96 % и 96,2 % соответственно. В стандарте под этим номером указывается как ректификованный, так и денатурированный этиловый спирт, предназначенный для использования в парфюмерной промышленности.

Для более прозаичной цели - применения в качестве растворителя - существует свой ГОСТ: Р 52574-2006. Здесь речь идет только о денатурате с разной объемной долей этанола - 92,5 % и 99 %.

Что же касается такого вида, как пищевой этиловый спирт, то для него действует ГОСТ Р 51652-2000, и у него есть целых 6 сортов: первый (96 %), высшей очистки (96,2 %), "Базис" (96 %), "Экстра" (96,3 %), "Люкс" (96,3 %) и "Альфа" (96,3 %). Здесь уже речь идет в первую очередь о сырье и некоторых других сложных показателях. Например, продукт марки "Альфа" вырабатывается только из пшеницы, ржи или их смеси.

До сих пор многие проводят, так сказать, параллели между двумя понятиями: спирт этиловый - ГОСТ 18300-87, который был принят еще в СССР. Этот стандарт давно утратил силу, что, однако, не мешает строить производство в соответствии с ним до сих пор.

Использование

Пожалуй, затруднительно найти вещество, которое имеет столь же широкое применение. Этиловый спирт так или иначе используется в очень многих отраслях производства.

Прежде всего, это пищевая промышленность. Самые разные алкогольные напитки - от вин и ликеров до виски, водки и коньяка - соджержат в своем составе упомянутый спирт. Но сам по себе в чистом виде этанол не используется. Технология предусматривает закладку сырья, например, виноградного сока и инициацию процесса брожения, а на выходе получается уже готовый продукт.

Еще одна область широкого применения - это медицина. Этиловый спирт 95 % в данном случае используется чаще всего, ведь он обладает прекрасными антисептическими свойствами, а также растворяет многие вещества, что позволяет с его помощью делать эффективные настойки, микстуры и прочие препараты. Кроме того, при разных видах наружного применения он способен как эффективно согревать, так и охлаждать организм. Нанеся его на кожу, можно быстро сбить высокую температуру тела на градус-полтора. И наоборот, энергичные растирания помогут согреться. Кроме того, при хранении анатомических препаратов также используется спирт этиловый медицинский.

Разумеется, еще одна область применения - это техника, химия и все, что с этим связано. Речь идет о лакокрасочных покрытиях, растворителях, очистителях и пр. Кроме того, этанол используется в промышленном производстве многих веществ или является сырьем для них (диэтиловый эфир, тетраэтилсвинен, уксусная кислота, хлороформ, этилен, каучук и многие другие). Спирт этиловый технический, естественно, совершенно непригоден в пищу, даже если он очищен.

Разумеется, во всех этих случаях речь идет о совершенно разные разновидности, каждая из которых имеет свои особенности. Так, пищевой спирт этиловый ректификованный вряд ли будут использовать для технических целей, тем более, что он облагается акцизом, а значит, его стоимость гораздо выше по сравнению с неочищенным. Впрочем, о ценообразовании речь пойдет отдельно.

Применение в новых технологиях

Все чаще в последние годы говорят об использовании этанола в качестве топлива. Этот подход имеет своих противников и сторонников, особенно часто речь об этом заходит в США. Дело в том, что американские фермеры традиционно выращивают много кукурузы, которая теоретически может служить прекрасным сырьем для того, чтобы получить спирт этиловый. Цена такого топлива однозначно будет ниже стоимости бензина. Этот вариант снимает вопрос зависимости многих стран от поставок нефти и цен на энергоносители, ведь производство спирта может располагаться где угодно. Кроме того, это безопаснее с точки зрения экологии. Впрочем, уже сейчас можно заметить использование этанола в этом качестве, но в гораздо меньших масштабах. Это спиртовки - специальные химические нагреватели, домашние мини-камины, а также многие другие приборы.

Это может быть действительно перспективным направлением работы в поисках альтернативных, возобновляемых и достаточно дешевых источников энергии. Проблема для России здесь состоит в менталитете. Достаточно сказать, что спиртовые фонари в Москве продержались недолго - работники, которые занимались их работой, просто выпивали сырье. И даже если топливо будет содержать различные примеси, совсем избежать отравлений вряд ли удастся. Впрочем, для РФ есть и другие поводы не стремиться к таким изменениям, поскольку переход на такой вид энергии грозит для страны серьезным снижением объема экспорта энергоносителей.

Действие на человеческий организм

В классификации СанПин этанол относится к 4 классу, то есть малоопасным веществам. Сюда же, кстати, относятся керосин, аммиак, метан и некоторые другие элементы. Но это не значит, что не стоит относиться к алкоголю несерьезно.

Этиловый спирт при употреблении внутрьсерьезно влияет на центральную нервную систему всех животных. Он вызывает состояние, называемое алкогольным опьянением, характеризующееся неадекватным поведением, заторможенностью реакций, снижением восприимчивости к различного рода раздражителям и т. д. При этом все сосуды расширяются, увеличивается теплоотдача, учащается сердцебиение и дыхание. В состоянии небольшого опьянения ясно видно характерное возбуждение, при повышении дозы сменяющееся угнетением центральной нервной системы. Как правило, после этого появляется сонливость.

В более высоких дозах может наступить алкогольная интоксикация, серьезно отличающая от картины, описанной ранее. Дело в том, что этанол является наркотическим веществом, но не используется в этом качестве, поскольку для эффективного усыпления нужны дозы, крайне близкие к тем, при которым наступает паралич жизненно важных центров. Состояние алкогольной интоксикации - как раз та грань, когда без оказания экстренной помощи человек может умереть, поэтому так важно отличать это от опьянения. При этом наблюдается что-то вроде комы, дыхание редкое и пахнет спиртом, пульс учащенный, кожа бледная и влажная, температура тела понижена. Необходимо немедленно обратиться за медицинской помощью, а также попробовать промыть желудок.

Регулярное употребление этанола может вызвать пагубное пристрастие - алкоголизм. Оно характеризуется изменением и деградацией личности, также страдают различные системы органов, прежде всего это касается печени. Существует даже характерное для алкоголиков "со стажем" заболевание - цирроз. В некоторых случаях оно даже приводит к необходимости пересадки.

Что касается наружного применения, этиловый спирт раздражает кожу, одновременно являясь эффективным антисептиком. Он также уплотняет эпидермис, поэтому его используют для обработки пролежней и других повреждений.

Реализация и ее особенности

Стандарты - это не единственное, с чем имеют дело те, кто производят спирт этиловый. Цена на разные сорта, марки и разновидности очень разнится. И это неспроста, ведь то, что предназначего для употребления в пищу - подакцизный товар. Обложение этим дополнительным налогом делает стоимость соответствующего ректификата заметно выше. Это позволяет в известной степени контролировать оборот спирта этилового в продаже, а также стоимость алкогольной продукции.

Кстати, это еще и вещество, подлежащее строгому учету. Поскольку этанол используется при производстве лекарств, медицинских манипуляциях и т. д., он в той или иной форме хранится в аптеках, больницах, поликлиниках и прочих учреждениях. Впрочем, это не означает, что устроившись на работу по соответствующей специальности, можно легко и незаметно получить в пользование хоть какое-то количество вещества. Учет этилового спирта производится с помощью специального журнала, а нарушение процедур является административным правонарушением и наказывается штрафом. Что пропажу заметят в самые короткие сроки.

Этиловый спирт активно используется во многих народнохозяйственных сферах: пищевой, химико-фармацевтической, парфюмерной, микробиологической, где он представляет собой первооснову многих видов продукции. Требования к качеству спирта значительно разнятся, что обусловлено спецификой его использования, а также характеристиками и режимами технологических операций в процессе производства.

Наиболее популярны два метода его получения: микробиологический и химический. Первый предусматривает процедуру сбраживания сахаров дрожжами-сахаромицетами. Эта технология широко используется в случае мини производства спирта. По второму методу его получают из этилена путем каталитической гидратации - данная технология тесно связана с применением биологических ферментов-катализаторов. В результате химического синтеза осуществляется производство технического спирта, а при биологическом - пищевого и врачебного.

Главное сырье для производства спирта - растительная масса с высоким содержанием крахмала, сахара и клетчатки. В соответствии с этим сырье делят на 3 основных класса: крахмалсодержащее (зерновые культуры, картофель); сахаросодержащее (свекловица, меласса, виноград, фрукты) и клетковиносодержащее (ксилема, солома, отходы сульфит-целюлозной отрасли). Самым популярным и экономичным видом является картофель. Входящий в его состав крахмал обладает быстрой развариваемостью, клейстеризацией и осахариванием. На спиртовую переработку идет любое зерно, в т. ч. и негодное для пищевого и кормового направления.

Технологический процесс производства спирта

Производство этилового спирта состоит из обязательных технологичных операций, которые условно можно объединить в три этапа: предварительный (мойка, очищение сырья, подготовка солодового экстракта и культур микроорганизмов); основной (разварка сырьевой массы, сахарификация - переход крахмала в сахар, сбраживание, дистилляция браги и сбор спирта-сырца); заключительный - ректификационная очистка.

При производстве спирта из зерна сырьевая масса должна отличаться высоким содержанием крахмала и влажностью менее 17 %. Подготовительный этап технологии состоит в предварительной очистке сырья от механических, органических и сорных примесей. Для этого используют различное технологическое оборудование: воздушно-ситовые, магнитные сепараторы, триеры.

Процесс разваривания состоит в том, что сырье для производства этилового спирта обрабатывают парообразной фазой раствора под давлением 0,5 МПа с целью размягчения клеточной структуры, набухания крахмала, извлечения и преобразования его в растворимое состояние для ускорения этапа сахарификации ферментами. При этом осуществляется усиленный рост объема сахаров вследствие распада крахмала.

На сегодняшний момент варка крахмалсодержащего материала осуществляется 3-мя методами: периодичным, полунепрерывным и постоянным. Наиболее распространен последний вариант с использованием 2-х схем. Согласно 1-й операция проходит при невысокой температуре (около 140°С), но продолжительное время (1 час). По 2-й - температура варки около 170°С на протяжении 3 мин. При таком виде варки сырьевая среда сплошной массой передвигается через выпаривальный аппарат для производства спирта. С целью осуществления однородности потока массу дробят.

Следующей операцией технологии производства пищевого спирта является остывание подготовленной среды и её сахарификация в результате взаимодействия с солодовым раствором или ферментами при 58°С. Традиционно сахарификация проходит непрерывным способом с использованием вакуумного охлаждения. Остывание в вакуум-аппарате предупреждает тепловое инактивирование катализаторов-ферментов сахарифицирующих веществ. Принцип его состоит в уменьшении давления, что обуславливает резкое остывание разваренной массы из-за расхода тепловой энергии на испарение влаги.

Непрерывный тип сахарификации осуществляют по 1- или 2-поточному методу. В первом случае в осахариватель (цилиндрообразный агрегат с конусовидным основанием и мешателем) поступает разваренная смесь и осахаривающие вещества, которые выдерживают на протяжении четверти часа. При 2-поточном методе разваренную массу делят на 2 одинаковых потока и направляют в осахариватели. В 1-й осахариватель идет 66% осахаривающих веществ, во 2-й - наполовину осахаренное сусло. Их остужают и направляют на сбраживание в 1-й и 2-й основные агрегаты бродильной батареи. На выходе сусло имеет около 17% сухого вещества, в т. ч. 15% сбраживаемых сахаров.

Бродильные процессы в сусле происходят за счет активизации дрожжевых ферментов, при этом мальтоза распадается до глюкозы и перебраживается в спиртовую фазу и углекислоту. В ходе этого процесса просматриваются 3 этапа: сбраживание, основное брожение и конечное дображивание. В начальном моменте наблюдается активизация жизнедеятельности дрожжей. Последующий отличается стремительным сбраживанием сахарной фракции и сильным образованием углекислоты. В завершающем этапе происходит остаточное дображивание сахаров, которые образуются при досахаривании углеводов сусла.

Процесс брожения бывает периодичным, циклическим и поточным. Максимальная эффективность достигается при использовании последнего, который осуществляют на оборудовании из последовательно соединенных дрожжанок, сбраживателя и 10 бродильных агрегатов. Дрожжанки и сбраживатель применяют для подготовки требуемого объема производственных дрожжей. В ходе работы дрожжанки наполняются суслом, проводится его пастеризация при 80°С на протяжении получаса, далее его остужают до 30°С, кислотность регулируют до уровня 3,6-3,8 рН серной кислотой и, наконец, вносят из другой дрожжанки дрожжи для засева (30% от объема). Дрожжи размножаются до уровня сухого вещества в сусле 5%. После этого 3/4 объема дрожжей переходит во сбраживатель, куда параллельно заправляется остывшее сусло, всю массу подкисляют до нормативной кислотности. Последняя четверть дрожжей направляется в другой агрегат для размножения.

Оборудование, необходимое для производства

Среди оборудования для производства спирта следует выделить бродильные агрегаты цилиндрического типа, имеющие герметичный люк для предотвращения испарения спирта и выделения углекислоты в помещение завода. В общей сложности этап брожения продолжается 60 ч. На заводах по производству спирта, выпускающих исключительно спирт, введение пробирочной культуры дрожжей производится 1 раз/мес., а полностью меняют их в бродильной батарее еженедельно. На заводах, оснащенных вспомогательными цехами хлебобулочных дрожжей, получаемых из бражки, число замен возрастает до 2-3 раз в неделю.

Затем зрелая бражка направляется на дистилляцию. Этот этап технологии производства спирта является обязательным в связи со сложным компонентным составом бражки: помимо воды и спирта сюда входят сахара, минеральные элементы, различные летучие компоненты в зависимости от типа и качественных особенностей сырья, параметров переработки.

В ходе дистилляции осуществляется расщепление смеси - при кипячении более летучие элементы преобразуются в парообразное состояние. В спиртово-водном комплексе летучесть спиртовых паров независимо от температуры существенно превышает этот показатель у водяного пара, из-за чего количество спирта в спиртово-водном комплексе ниже, чем в парах.

На современных заводах по производству спирта предусматривается обязательное очищение спирта-сырца от примесей. Для этого используют специальные ректификационные аппараты постоянного действия, обуславливающие разделение смеси из нескольких элементов, температура кипения которых разнится. Очищение спирта способом дистиллирования предусматривает разность между коэффициентами ректификации (отношение объема данного компонента в парообразной фазе к объему в жидкой).

Данные коэффициенты у разнообразных примесей колеблются и тесно зависят от концентрации спирта. Для анализа необходимости очищения спирта от примесей следует сопоставить их коэффициенты испарения. В случае, когда коэффициент равен одному, дистилляция не эффективна, поскольку дистиллят в конечном результате не изменится. Когда коэффициент превышает единицу, то в объем примесей в дистилляте превышает этот показатель в начальной смеси. Когда коэффициент ниже единицы, то уровень примесей, содержащихся в дистилляте, ниже, чем первоначально.

Очищение спирта происходит в большей степени на ректификационных аппаратах непрерывного действия, где он ректификуется согласно уровням коэффициентов испарения. Данный вид оборудования применяется на таких заводах, в которых основополагающей сырьевой продукцией выступает спирт-сырец. На предприятиях ректификованный спирт производят напрямую из бражистой фазы на брагоректификационных аппаратах косвенного действия, которые включают 3 колонны: бражническую, эпюрационную и ректификационную. В 1-й из бражки получают этиловый спирт и летучие вещества, во 2-й - убирают головные примеси, в 3-й непосредственно собирают ректификованный спирт. Кроме основных аппаратов в составе присутствуют вспомогательные аппараты - сивушный и заключительный (для контрольного очищения спирта).

Изготовление спиртосодержащей продукции производится при наличии у предприятия соответственных лицензий на производство спирта. Строгий контроль за спиртопроизводством сопровождается ужесточением узкоспециального законодательства, ростом затрат на , регламентированием норм по цельной переработке отходов.